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Abstract

In clinical cancer treatment, genomic alterations would often affect the response of patients to anticancer drugs. Studies
have shown that molecular features of tumors could be biomarkers predictive of sensitivity or resistance to anticancer
agents, but the identification of actionable mutations are often constrained by the incomplete understanding of cancer
genomes. Recent progresses of next-generation sequencing technology greatly facilitate the extensive molecular
characterization of tumors and promote precision medicine in cancers. More and more clinical studies, cancer cell lines
studies, CRISPR screening studies as well as patient-derived model studies were performed to identify potential actionable
mutations predictive of drug response, which provide rich resources of molecularly and pharmacologically profiled cancer
samples at different levels. Such abundance of data also enables the development of various computational models and
algorithms to solve the problem of drug sensitivity prediction, biomarker identification and in silico drug prioritization by the
integration of multiomics data. Here, we review the recent development of methods and resources that identifies
mutation-dependent effects for cancer treatment in clinical studies, functional genomics studies and computational studies
and discuss the remaining gaps and future directions in this area.
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Introduction
Dissecting mutation impacts to therapeutic response has long
been a critical problem in cancer studies. Currently, mutations
are suggested to play two major roles in cancer treatment. They
could either confer resistance [1] or be used to identify signif-
icant responders to specific targeted drugs [2]. Both effects are
continuously discovered and verified during clinical treatment
of cancer, and typical examples could be found in various types
of cancers. For instance, the importance of EGFR mutations to
therapeutic responses was found early in the clinic, when lung
adenocarcinoma patients detected with EGFR exon 19 deletion
and L858R were associated with better response to gefitinib
[3–5]. During clinical treatment and tumor evolution, acquired
EGFR T790M mutation [6, 7] will lead to resistance to gefitinib
and erlotinib. In addition, HER2 amplification [8] was considered
as a clinical indication of trastuzumab in HER2-positive breast
cancer. However, due to the high cost of DNA sequencing at that
time, the scale of genomic profiling and the number of patients
involved were both limited.

With the recent development of next-generation sequencing
(NGS) [9], the expense and time required for sequencing have
been greatly reduced, and it is now feasible to carry out large-
scale genomic profiling of patients’ tumors in cancer treatment
study. Apart from the systematic characterization of tumor
genome projects such as the Cancer Genome Atlas (TCGA)
[10] and International Cancer Genome Consortium (ICGC) [11],
a number of clinical trials with molecular characterization of
patients were conducted as regional and international projects.
Functional genomics studies including cancer cell line-based
drug screening, CRISPR-Cas9 (the clustered regularly interspaced
short palindromic repeats associated protein 9) screening and
patient-derived model (PDM) studies have also employed NGS to
illustrate the effects of mutations to specific therapeutic agents
in particular types of cancer.

Along with the emergence of precision medicine, researchers
are working to more precisely identify functional genomics alter-
ations, which are responsive to targeted drugs. Such actionable
or drugable mutations [2, 12] could guide the prescription, reposi-
tioning and development of targeted cancer therapy. In the pro-
cess of identifying actionable mutations, DNA sequencing and
therapeutic response data are accumulating rapidly. To make full
use of such a tremendous amount of data, computational meth-
ods and bioinformatic tools are developed, and other types of
data, such as transcriptomic and epigenomic profiles, are often
integrated [13]. There are resources and databases collecting and
formatting clinical implications of genomic alterations in cancer
treatment, drug sensitivity prediction and biomarker identifi-
cation methods like those submitted to the National Cancer
Institute and the Dialogue on Reverse Engineering Assessment
and Methods (NCI-DREAM) program [14] and in silico drug prior-
itization methods. Here, we review the progress in illustrating
mutation impact on cancer treatment with an emphasis on
the bioinformatics efforts involved. The development of clinical
studies, functional genomics studies and computational studies,
as well as the interaction of these three research fields, are
highlighted.

Clinical studies
Clinical studies

Since the improvement in NGS technology has laid the founda-
tion for large-scale genomic characterization of tumor samples,
a number of clinical trials are carried out across the world

to detect novel actionable mutations associated with current
targeted cancer drugs and to further investigate known action-
able mutations in a larger cohort [15]. For example, KRAS exon
2 mutations were confirmed to be predictive of resistance to
cetuximab in colorectal cancer patients in a clinical trial [16].
Typical examples of large-scale clinical trials include the Lung
Master Protocol [17] and the NCI Molecular Analysis for Therapy
Choice (NCI-MATCH) [18] in the United States, which are part of
the Precision Medicine Initiative of NCI, the SCRUM-Japan [19]
in Japan, and the National Lung Matrix Trial [20] in the United
Kingdom. Most of these clinical trials adopted either an umbrella
trial design or a basket trial design. The umbrella trial [21, 22]
defines that patients will first be selected by their cancer type,
and those with the same type of cancer will be further assigned
to different groups to receive different therapies according to
their genomic alterations. The basket trial [21, 22] requires that
patients are assigned into different arms based on their genomic
alterations irrespective of the tumor tissue of origin. Of note,
NCI-MATCH adopted the Oncomine Comprehensive Panel [23],
which is an integrative NGS-based assay of Thermo and pro-
vided a classification scheme for actionable mutations, and the
National Lung Matrix Trial employed the actionable mutation
tiers [2] for classifying actionable mutations. The abovemen-
tioned clinical trials designed to match single mutation with
monotherapy often have the problem of low matching rate and
low response rate. More recently, clinical trials with novel cancer
therapy-matching strategies were carried out to address this
issue. For example, the I-PREDICT study [24] matched patients
with drug combinations based on multiple actionable mutations.
The WINTHER trial [25] compared assigning therapies to patients
based on DNA sequencing data with that on gene expression
data. And the TARGET study [26] demonstrated the feasibility
of genomic profiling using circulating tumor DNA in the pro-
cess of matching patients with cancer therapy. These clinical
trials illuminate possible future directions for more efficient
and rational recruitment of patients during the trial design. In
addition to these regional clinical trials, The ICGC has recently
launched the ICGC-ARGO project, aiming to integrate, analyze
and share cancer treatment data and molecular profiling data
of a million patients from all over the world [27]. There are
also large-scale cancer genome sequencing projects such as the
Memorial Sloan Kettering Cancer Center–Integrated Mutation
Profiling of Actionable Cancer Targets (MSK-IMPACT) project
[28], which aims to facilitate cancer clinical trials by providing
genomic profiling data. The MSK-IMPACT project focuses on
sequencing samples of metastatic cancer patients and serves as
an important complement of the TCGA project.

Apart from the classic targeted cancer therapy, recent
advances in immunotherapy provide new possibilities for
cancer treatment. The benefits and problems of combination of
targeted therapies and immunotherapies in cancer treatment as
well as the rational design of corresponding clinical trials were
discussed [29, 30]. Progress in combining immunotherapies with
targeted therapies dependent of specific actionable mutations
were also reported in melanoma [31] and non-small cell
lung cancer [32]. It has been observed that the activation
of EGFR pathway induced by actionable mutations (such as
EGFR L858R/T790M) positively correlates with the immuno-
suppression signature by upregulation of PD-1, PD-L1, CTLA-4
and proinflammatory cytokines [33]. Expression of actionable
mutation (V600E) in BRAF could promote transcription of IL-1α

and IL-1β and induce immunosuppression in melanocytes and
melanoma cell lines [31]. Such molecular evidence illuminates
the potential combinatory effect of classic targeted cancer
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Figure 1. A flowchart showing the discovery of therapeutic biomarkers using comprehensive drug screening on cancer cell lines and PDMs. Cancer specimens are

cell cultured or transplanted into immunodeficient mice. In vitro and in vivo drug screenings are carried out among these established cell or mouse models. Next,

multiomics profiles together with drug response data are used to establish drug–biomarker relationship (such as specific mutations). After validation in clinical trials,

patients with matched genomic features could be treated with the drug that showed ideal response.

treatment and immunotherapy. However, most current results
are based on preclinical models while clinical trials are still on-
going.

Functional genomics studies
Cell line-based drug screening studies

The utilization of human cancer cell lines to study drug
response started from the NCI-60 in 1980s [34]. Along with the
unprecedented development in sequencing technology, cancer
cell line-based drug sensitivity studies incorporating genomic
profiling data emerge in succession (Figure 1). Since it would be
intractable and prolix to include all relevant studies here, we will
focus on the major projects and review them in sequence below.

NCI-60 was the first systematic project to employ cancer
cell lines for anticancer drug screening. The project was initi-
ated with the objective to facilitate drug discovery in human
solid tumors [34] and was soon expanded to include 60 cell
lines representing nine types of cancer. Tens of thousands of
compounds were screened in these cell lines to determine their
sensitivity or resistance patterns. Furthermore, some algorithms
were developed for NCI-60 data analysis and comparison. COM-
PARE [35] serves to compare the cell growth inhibition patterns
when treated with tested compounds with the backend NCI-60
screening database, which reflects the similarity of mechanism
of actions (MOA) between compounds and help to elucidate

the MOA of novel compounds. Researchers have also correlated
tumor molecular profiles with drug response patterns from NCI-
60. Weinstein et al. [36] integrated gene expression with drug
screening data from NCI-60 to study the molecular pharma-
cology of cancer. In 2009, Shankavaram et al. [37] developed
CellMiner, which compiles the molecular profiles of the NCI-60
cell lines and served as a relational database and query tool.
To date, NCI-60 cell lines have gone through comprehensive
molecular profiling, and data such as whole-exome sequencing
(WES), copy number variation, single-nucleotide polymorphism
array, gene expression and reverse-phase protein lysate array are
available. However, in general, the number of cell lines included
in NCI-60 is relatively small.

The advancement of NGS enables the implementation of
large-scale cancer cell line-based drug screening with compre-
hensive molecular profiling of cell lines (Table 1). In 2012, Bar-
retina et al. [38] first introduced the Cancer Cell Line Ency-
clopedia (CCLE). CCLE contains both genomic data of 947 can-
cer cell lines covering 36 tumor types and pharmacological
screening data of 24 compounds in 479 of the cell lines. The
genomic characterization of cancer lines in CCLE were compre-
hensive, including gene expression, chromosomal copy num-
ber and targeted massive sequencing of 1651 protein-coding
genes. Comparison of genomic profiles between cancer cell lines
and primary tumors demonstrated their similarity in terms of
chromosomal copy number, gene expression patterns and point
mutation frequency. With the major objective of identifying
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Table 1. Resources of large-scale cell line-based drug screening studies

Name Number of cell
lines with
genomic
characterization

Number of cell
lines with drug
screening data

Number of
compounds

Molecular
characterization

URL Reference

Cancer Cell Line
Encyclopedia
(CCLE)

947 479 24 gene
expression,
chromosomal
copy number
and targeted
massive
sequencing of
1,651
protein-coding
genes

https://portals.
broadinstitute.
org/ccle

[38]

Genomic of
Drug Sensitivity
in Cancer
(GDSC) – 1st
publication

639 639 130 copy number
alteration, gene
expression, and
targeted
sequencing of
64 genes

https://www.
cancerrxgene.
org/

[39]

Genomic of
Drug Sensitivity
in Cancer
(GDSC) – 3rd
publication

1,001 990 265 whole exome
sequencing,
copy number
alteration, gene
expression and
DNA
methylation

https://www.
cancerrxgene.
org/

[41]

Cancer
Therapeutics
Response Portal
(CTRP) v1

use genomic
characterization
from CCLE

242 354 use genomic
characterization
from CCLE

https://portals.
broadinstitute.
org/ctrp.v1/

[42]

Cancer
Therapeutics
Response Portal
(CTRP) v2

use genomic
characterization
from CCLE

860 481 use genomic
characterization
from CCLE

https://portals.
broadinstitute.
org/ctrp/

[43]

correlations between genomic profiles and drug sensitivity, they
further constructed predictive models using machine learning
methods (naïve Bayes algorithm and elastic net algorithm), and
results showed that both known and novel genomic features
were identified as top predictors for drug sensitivity.

Garnett et al. [39] introduced their effort in identifying
genomic biomarkers of drug sensitivity in cancer cells at the
same time with CCLE. Six hundred thirty-nine cancer cell
lines, which were subjected to copy number alteration analysis,
gene expression profiling and targeted sequencing of 64 genes,
were screened with 130 drugs. These data were then compiled
in a web-based resource, the Genomic of Drug Sensitivity in
Cancer (GDSC) [40] later by the same group. Recently, Iorio
et al. [41] published the latest progress of GDSC, which further
expanded their work to include 1001 human cancer cell lines
and 265 drugs. Drug sensitivity screening and genomic profiling
including WES, copy number alteration, gene expression and
DNA methylation were generated for most cell lines. To compare
the differences between tumor samples and cancer cell lines,
they defined a catalog of clinically relevant oncogenic alterations
through analysis of tumor sample data from TCGA and ICGC,
and comparison demonstrated that this large panel of human
cancer cell lines could well capture the oncogenic alterations
identified in tumor samples. To determine genomic biomarkers
predictive of drug sensitivity, analysis of variance and logic

models were used for identification of single genomic alteration
or combination of genomic alterations, respectively. Importantly,
by using machine learning models, which employ elastic net
and random forest algorithms, gene expression profiles turned
out to be the best predictor of drug sensitivity in pan-cancer
analysis, while in cancer-specific context, mutated genes and
copy number alterations became the major predictors. In 2013,
Basu et al. [42] described the Cancer Therapeutics Response
Portal (CTRP). In this study, 354 small molecules were screened
in 242 genetically annotated human cancer cell lines, which
were a subset of the cell lines in CCLE. In 2015, Seashore-Ludlow
et al. [43] introduced the updated version of CTRP (CTRP v2).
CTRP v2 increased their data set to include 860 cancer cell lines
(still a subset of CCLE) and 481 compounds, which was different
from CCLE and GDSC; CTRP focused on increasing the number of
tested drugs and developing novel analysis methods. In CTRP v1,
a sorted-based enrichment analysis and elastic net algorithms
were employed respectively to identify genomic biomarkers
of drug response, while a new method, the annotated cluster
multidimensional enrichment (ACME), was developed in CTRP
v2. Compared with previous methods that focused on identifying
predictive biomarkers for each compound, ACME aimed to detect
correlation between clusters of cancer cell lines with similar
genetic or cellular features and clusters of compounds sharing
common targets.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1886/5626330 by Tianjin M

edical U
niversity user on 02 Septem

ber 2021

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ctrp.v1/
https://portals.broadinstitute.org/ctrp.v1/
https://portals.broadinstitute.org/ctrp.v1/
https://portals.broadinstitute.org/ctrp/
https://portals.broadinstitute.org/ctrp/
https://portals.broadinstitute.org/ctrp/


1890 Yao et al.

Some debates [44] have also been raised on the consistency
of drug response data in CCLE and GDSC. After a series of dis-
cussions [45–48], researchers reached the consensus that when
taking the biological nature of targeted drug screening in cancer
cell lines into consideration, these two series of studies reach
a reasonable concordance. Several notes for the best practice of
experiment and analysis were also put forward for future studies
[49].

CRISPR screening studies

Over the past decades, the investigation of cancer drug response
by library-based functional perturbations has also experienced
rapid development. For example, RNAi screening employs
small interfering RNAs or short hairpin RNAs to identify drug
response genes and mutation dependencies in cancer [50,
51]. Recently, CRISPR-Cas9-based pooled libraries emerge to
be a critical tool used in therapeutic targets discovery and
chemical–genetic interactions dissection [52]. For example, Shi
et al. [53] introduced CRISPR-Cas9 indel mutagenesis strategy to
exons encoding functional protein domains and inferred their
functional importance by measuring the potency of negative
selection of each perturbation. This study also illustrated that
indel mutation-dependent loss of function of specific protein
domains allows comprehensive identification of protein units
that are suitable for drug targeting. Behan et al. [54], in a recent
large-scale CRISPR experiment, screened 324 human cancer cell
lines from 30 cancer types and developed a computational
framework to prioritize candidates for cancer therapeutics.
They comprehensively inferred potential drug targets in defined
tissues and genotypes and then uncovered many priority targets
with mutation-linked dependencies. Pan et al. [55] combined
CRISPR screening and found that the tumors harboring inacti-
vating mutations in a specific SWI/SNF chromatin remodeling
complex were more sensitive to T cell-mediated killing, which
provides a promising strategy to overcome treatment-resistant
tumors using immunotherapy. Although most existing studies
cannot directly connect specific mutation effect with drug
response, they have narrowed down the therapeutic targets to
gene or protein domain level. Given the possibility of large-scale
precise CRISPR editing using either homology-directed repair or
deaminase base editor, CRISPR screening have been optimized
to investigate the mutation-dependent effect on cancer drug
resistance. Jun et al. [56] recently leveraged CRISPR RNA-
guided deaminase and single-cell RNA-seq technology to dissect
single-mutation consequence associated with resistance to
vemurafenib in BRAF V600E-mutant melanoma. They designed
420 sgRNAs to introduce precise C to T mutations for all of
the exons of three known vemurafenib-resistant genes, MAP
2K1, KRAS and NRAS. By CROP-seq, an experiment to analyze
designed perturbation effects with each cell by integrating both
the gene expression readout and CRISPR-based perturbations,
they validated classical mutations in critical protein domain
and identified several novel mutation-dependent transcriptome
signatures for conferring resistance to vemurafenib.

The CRISPR-Cas9 system has great efficiency in genome
editing, which makes it a powerful tool in studying mutation-
dependent cancer drug response. However, it also has several
limitations, which may affect its utilization. For example,
researchers should pay extra attention to the potential off-target
problem, which may lead to false interpretation of mutation
effects [57]. And there could also be false positive results
caused by abnormal genomic copy number in CRISPR screening
studies [58]. Looking forward, CRISPR screening studies will be

frequently employed to examine the mechanism of mutation-
dependent anticancer drug responses, particularly to investigate
the novel therapeutic methods that remit drug resistance during
cancer therapy.

PDM studies

Despite the rapid progress in cancer research, only a tiny fraction
of compounds can be approved for clinical research by the Food
and Drug Administration (FDA). The reason is attributed to lack
of clinical cancer models, as well as limitations of available
panels of cancer cell lines that directly match with patients’ con-
ditions. However, recent advances in PDMs, including patient-
derived tumor cell (PDC), patient-derived xenograft model (PDX)
and patient-derived organoid (PDO), greatly facilitate the inves-
tigation of the association between molecular biomarkers and
drug response [59, 60]. Among them, PDC is the easiest to con-
struct and used as in vitro model in high-throughput drug screen-
ing and cancer research [61, 62]. However, it cannot reflect tumor
microenvironment and has the problem of loss of tumor hetero-
geneity during the culture process, which leads to differences
in drug efficacy in following clinical trials [62]. PDX, which is
constructed by injecting tumor samples directly obtained from
cancer patients into mice, can largely retain genomic character-
istics, histological features, molecular diversity, and microenvi-
ronment. It is a great model to evaluate the efficacy of anticancer
drugs and identify novel mutations associated with targeted
cancer therapies (Figure 1). For example, Bertotti et al. [63] con-
structed PDX models with colorectal cancer samples from 85
patients to test the response of cetuximab. It turned out that
the PDX models showed a similar response rate as colorectal
cancer patients. HIF-2 antagonist PT2399 was also tested in 20
NOD/SCID PDX models constructed with renal cancer patient
samples during preclinical trials. It suppressed tumor growth in
56% of mice models and demonstrated its efficacy [64]. Stewart
et al. [65] and Childhood Solid Tumor Network used tumor sam-
ples from 168 pediatric patients to establish 67 patient-derived
xenografts of 12 types of cancer. Several promising compounds
were identified as potential pediatric cancer treatment based
on their models. Researchers at Novartis Institute of Biomedical
Research constructed about 1000 PDX models with a diverse
set of driver mutations. Using these PDX models, small molec-
ular compounds were screened in vivo to evaluate the pop-
ulation responses of 62 treatment strategies according to six
indicators [66].

In order to facilitate systematic application of PDX models
to drug development process, several groups in academia and
industry have now attempted to develop a collaborative net-
work for PDX biobanking (Table 2). For example, EurOPDX is
a collaborative network of 16 European academic institutions.
It consists of more than 1500 PDX models covering over 30
tumors types [67]. NCI launched a Patient-Derived Model Repos-
itory (PDMR) database, which consists of clinical annotations
of early-passage patient-derived xenografts for quality control
[68]. Besides, the NCI-supported US Pediatric Preclinical Testing
Consortium (PPTC) is a program of in vivo testing of pediatric
drug candidates using pediatric cancer PDX models [69]. Public
Repository of Xenografts (PRoXe) is an open-source repository
of PDXs particularly focusing on leukemia and lymphoma [70].
The children’s oncology group (COG) is a clinical trials group,
and they construct a cell culture and xenograft repository to
provide validated cell lines and PDXs based on pediatric cancer
patient samples [71]. In addition, Bruna et al. [72] established
83 PDX models of breast cancer, and they were combined with
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Table 2. Major repositories of patient-derived xenograft model

Name Institutions Cancer type Number of
PDX models

Molecular
characteriza-
tion

Open-access
database

URL Reference

EUROPDX 16 European
academic
institutions

more than 30
different
solid tumor
types

1,498 WES, gene
expression,
CNA

Yes http://
europdx.eu/

[67]

NCI Patient-
Derived
Models
Repository
(PDMR)

US National
Cancer
Institute

more than 17
different
solid tumor
types

2,039 WES, gene
expression

Yes https://pdmr.
cancer.gov/

[68]

US Pediatric
Preclinical
Testing
Consortium
(PPTC)

US National
Cancer
Institute

childhood
cancer solid
tumor and
leukemia

61 RNA
expression

Yes http://www.
ncipptc.org/

[69]

Public
Repository of
Xenografts
(PRoXe)

Weinstock
Laboratory

leukaemia
and
lymphoma

157 gene
expression

Yes https://www.
proxe.org/

[70]

Children’s
Oncology
Group (COG)

Texas Tech
University
Health
Sciences
Center

childhood
cancer

NA DNA
microarray

No https://www.
cccells.org/
xenografts.
php

[71]

Breast
Cancer PDTX
Encyclopae-
dia
(BCaPE)

Carlos
Caldas’
laboratory

breast
cancer

104 gene
expression,
CNA, DNA
methylation

Yes https://
caldaslab.
cruk.cam.ac.
uk/bcape/

[72]

PDC models of tumors to construct an integrated platform. This
platform was used for both high-throughput single drug, drug–
drug combination screening studies and in vivo drug response
testing. An open-access database, the Breast Cancer PDTX Ency-
clopaedia, was constructed to make these data freely available.
The Brain Tumor Resource Laboratory provides the first com-
prehensive resource for patients with pediatric brain tumors to
better understand the basis of sensitivity or resistance to cancer
therapies, particularly in rare brain tumor subtypes. It consists
of 30 PDX models and three independent cell lines, which are
representative of multiple molecular subgroups of malignant
pediatric brain tumors [73]. These PDX model biobanks are valu-
able resources for preclinical cancer pharmacogenomic stud-
ies. Combination of the PDX biobanks with unique therapeutic
strategies will promote the identification of novel predictive
biomarkers and eventually facilitate the progress of precision
cancer medicine.

Although PDX has many outstanding properties as a cancer
model, it cannot retain intratumor heterogeneity very well.
Intratumor heterogeneity, which results from intercellular
genetic variation, genomic instability of tumor cells, selection
pressure of microenvironment, disease progression and drug
treatment [74], can accelerate the occurrence of drug resistance,
and it is thus highly important to maintain this heterogeneity
in cancer models to better mimic the characteristics of tumor
samples [75]. PDX is also not suitable for high-throughput drug
screening because of its high cost and long establishment
time. Compared with PDC and PDX, PDO is able to retain the
genomic, histological and morphological characteristics of

tumor samples, including intratumor heterogeneity, while it
allows for in vitro high-throughput drug screening [76]. PDOs are
derived from patient samples, and it can self-organize in three-
dimensional culture in a short time due to their self-renewal and
differentiation capacities. More and more scientists build large
biobanks of patient-derived tumor organoids that can be used
to perform drug screening and assess drug response, including
bladder cancer [77], colorectal cancer [78], gastric cancer [79],
ovarian cancer [80], etc. Although PDO has many advantages
over other PDMs, as a newly developed technology, it can only be
constructed by a few laboratories. In addition, retaining tumor
heterogeneity and tumor purity is a tradeoff when constructing
PDOs and PDXs, which could be affected by many factors such
as sample source, sampling region, tumor culture platform as
well as tumor evolution.

Computational studies
Classification and resources for actionable mutations

To associate mutations with proper targeted therapies and
define their actionability, multiple groups have put forward their
classification schemes [2], which are similar to some extent.
Most schemes [12, 22, 23, 81–83] would classify mutations into
three to five groups with different levels of actionability accord-
ing to an integration of existing evidences. The top level means
that these mutations are actionable with high confidence, and
there is usually substantial clinical evidence involved, like
FDA guidelines and results from successful clinical trials. Such
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mutations may be considered as good candidates for follow-up
clinical trials. The medium level indicates that mutations are
potentially actionable with evidence from preclinical models
and experiments, and these mutations could be involved in
early-phase signal-seeking trials. The bottom level usually
contains all other mutations with little or no evidence about
their actionability. These various schemes provide practical
ways for implementation, and some classification approaches
have already been applied in recent clinical trials. However, a
well-accepted classification standard of actionable mutations
remains to be ascertained through continuous practices as
well as multicenter collaborations across the world to reach
a consensus.

Following the rapid data accumulation from clinical and
preclinical studies, several research groups and institutions have
developed multiple knowledge base to curate and format this
information. The early work started in 2011; Vanderbilt-Ingram
Cancer Center launched the My Cancer Genome online resource
aiming to provide up-to-date information of clinical relevance of
mutations. Later in 2013, Yeh et al. [84] described the DIRECT as
part of the My Cancer Genome knowledge resource. My Cancer
Genome records common mutations in cancer and curates their
effects on therapeutic responses from literature. Mutations are
arranged by cancer type (23 types of cancer) and gene, and each
webpage contains information of therapeutic response that this
mutation may influence with all information fully referenced.
Relevant clinical trials are also provided for each gene. In 2015,
Johnson et al. [85] from MD Anderson Cancer Center introduced
their Precision Oncology Decision Supports (PODS) platform. It
is a precision oncology framework containing the function of
determination of actionable mutations, identification of optimal
available targeted therapy for genomic alteration of interest and
evaluation of the confidence level for each treatment option. In
this article, they also described the Personalized Cancer Therapy
(PCT), which is an open-access web portal making part of the
PODS available to the public. Data of PCT are sorted by action-
able genes (26 genes), and each gene page includes actionable
genomic alterations, relevant drugs, levels of evidence of the
association between drugs and genomic alterations in tumor
type-specific context and relevant clinical trials. In addition,
information has undergone expert review and provided with
references. Also in 2015, Dienstmann et al. [86] described the
Gene-Drug Knowledge Database (GDKD). They manually curated
associations between predictive genomic biomarkers and can-
cer drugs and translated the data into a structured format.
Each association is an independent item in the database, and
it consists of tumor type, gene, variant, variant effect to drug
response, etc., and PubMed identifier is provided as a reference.
The database is available on Synapse in the format of Excel tables
and is regularly updated. It is worth mentioning that GDKD
actually integrates information from other public databases,
including My Cancer Genome and PCT, but My Cancer Genome
and PCT are intended for data query while GDKD provides all its
data in an Excel file, which makes it feasible to be incorporated
into user-specific analysis pipelines.

Since 2015, there is a surge of open-access databases develop-
ment, such as Cancer Driver Log (CanDL) [87], JAX Clinical Knowl-
edgebase (JAX-CKB) [88], Precision Medicine Knowledgebase [89]
(PMKB), Clinical Interpretation of Variants in Cancer (CIViC) [90],
OncoKB [91], Cancer Genome Interpreter (CGI) [92] and Database
of Evidence for Precision Oncology (DEPO) [93]. All databases are
summarized and compared (Table 3), and some of their special
features are discussed below. CanDL is a web-based database,
in which functionally characterized driver mutations were man-

ually curated by literature mining. It aims to provide mutation
actionability annotation and does not contain drug information
in its database. PMKB distinguishes itself from other resources
by its emphasis on clinical usage. The database is developed in
close collaboration with pathologists and aims to be applica-
ble to clinical reporting. For example, it will report whether a
variant is pertinent negative under specific tumor type. PMKB
supports both bulk download and access through application
programming interface (API), and through collaboration with
hospitals and research institutions, it has been constantly used
after targeted sequencing and WES, which proves its practi-
cability in a clinical context. CIViC is a web-based knowledge
base. Every clinical interpretation of variants in cancer is called
an evidence record, which is the basic unit in CIViC, and each
evidence record is described by a series of structured attributes,
including gene, variant, disease, drug and clinical relevance of
variant. CIViC differs from other databases in the way of data
curation and its efforts to make the data easily accessible. It
is designed to be a crowdsourced community to receive public
submissions from users, and the data submitted will then be
expert reviewed and transformed into a structured record if
accepted. Furthermore, CIViC is open-access and open-source
with public API and regular bulk download releases. OncoKB
consists of similar data as CIViC and supports various types of
data access methods. All data were collected and maintained
by their own knowledge systems group and curators. A special
feature of OncoKB is that it annotates more than 4000 genomic
alterations with their mutation effect and oncogenicity. How-
ever, only around 200 items of potential treatment implications
related to these annotated genomic alterations were recorded
in their database. DEPO is also a database of curated drugable
variants with potential clinical implications. The data type is
pretty much the same as other databases, but DEPO integrates
mutation functional annotation to inspect whether an input
mutation is close to known drugable mutations spatially. It
also enables users to visualize these potentially drugable sites
through its web portal. In addition, the Catalogue of Somatic
Mutations in Cancer (COSMIC) have also started adding drug
resistance information as one of the mutation annotations since
its v77 release in May 2016. This work is still underway with
constant updates [94–96].

There are also databases focusing on integration of cancer
cell line-based compound screening data and molecular profil-
ing data. Cancer Drug Resistance Database [97] compiles phar-
macological profiling data and drug targets mutation status data
of cancer cell lines from CCLE and COSMIC and provides tools
such as a clustering module and an NGS mapping tool to help
study mutations responsible for drug resistance. While Gohlke
et al. [98] integrates genomic, transcriptomic and pharmacolog-
ical data from CCLE, COSMIC and CellMiner to develop Cancer-
Resource. CancerResource also includes drug–target interaction
data and pathway information to make itself a comprehensive
cancer cell line database.

Drug sensitivity prediction and biomarker identification

Together with the tremendous amount of molecular and phar-
macological profiling data generated from the clinical and func-
tional studies, various kinds of bioinformatics tools, methods
and algorithms are developed to tackle the problem of drug
sensitivity prediction and biomarker identification in cancer
(Table 4). As there are numerous methods working on these two
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Table 3. Databases of cancer-related clinical implications of genomic alterations

Name Institutions Curation
method

Bulk
download

URL Year of
most recent
update

Reference

Cancer Driver Log
(CanDL)

The Roychowdhury Lab
Team at The Ohio State
University

expert curation Yes https://candl.osu.edu/ 2015 [87]

My Cancer Genome Vanderbilt-Ingram Cancer
Center

expert curation No https://www.
mycancergenome.org/

2016 [84]

Personalized Cancer
Therapy (PCT)

The University of Texas MD
Anderson Cancer Center

expert curation No https://pct.mdanderson.
org/

2019 [85]

Gene-Drug
Knowledge Database
(GDKD)

DIENSTMANN et al. at Sage
Bionetworks, Fred
Hutchinson Cancer
Research Center

expert curation Yes https://www.synapse.
org/#!Synapse:syn2370773/
wiki/

2017 [86]

JAX Clinical
Knowledgebase
(JAX-CKB)

The Jackson Laboratory expert curation No https://ckb.jax.org/ 2019a [88]

Precision Medicine
Knowledgebase
(PMKB)

Institute of Precision
Medicine at Weill Cornell
Medical College

crowdsourcing
+ expert review

Yes https://pmkb.weill.cornell.
edu/

2019 [89]

Clinical
Interpretation of
Variants in Cancer
(CIViC)

The McDonnell Genome
Institute at Washington
University School of
Medicine

crowdsourcing
+ expert review

Yes https://civicdb.org/home 2019a [90]

OncoKB Knowledge Systems group
at Memorial Sloan
Kettering Cancer Center

expert curation Yes https://oncokb.org 2019 [91]

Cancer Genome
Interpreter (CGI)

Barcelona Biomedical
Genomics Lab at Institute
for Research in
Biomedicine

expert curation
+ community
feedback

Yes https://www.
cancergenomeinterpreter.
org/home

2018 [92]

Database of Evidence
for Precision
Oncology (DEPO)

Ding Lab at Washington
University in St. Louis

expert curation No http://depo-dinglab.ddns.
net/

2018 [93]

Catalogue Of Somatic
Mutations In Cancer
(COSMIC)

Wellcome Sanger Institute expert curation Yes https://cancer.sanger.ac.
uk/cosmic

2018 [94–96]

aThese databases are updated daily.

related topics, here we only review some classic studies and
studies with special features.

Accurate prediction of drug sensitivity using genomic
features of tumors has long been the objective of researchers.
Due to the limitations of availability of tumor samples, high cost
and time required, it is usually unfeasible to build drug response
prediction models based on patient data. Thus, cell line-based
data became the common substitutions in most prediction anal-
ysis (Figure 2). In 2012, a systematic comparison of drug response
prediction algorithms was carried out through the collaboration
of NCI and DREAM [14]. This NCI-DREAM challenge provided
participants with genomic, transcriptomic, epigenomic and
proteomic profiles of human breast cancer cell lines and drug
screening profiles for a part of the cell lines. The remaining drug
sensitivity data were reserved for performance evaluation. Forty-
four teams from all over the world attended this project and
submitted diverse types of solutions, and the top-performing
method used a Bayesian multitask multiple kernel learning
(MKL) algorithm. Through analysis of all submitted methods,
it was shown that most top-performing solutions would model
the nonlinear relationship in the data set. In addition, of all
profiles provided, gene expression was reported to be the most

informative data type. However, when using MKL or elastic net
as the testing model, combination of two different types of data
would significantly improve the prediction performance, and
the best-performing MKL method actually integrated all types
of data and additional outside information such as biological
pathways. Similar attempts were made in other studies [38,
39, 42] like CCLE, GDSC and CTRP, as mentioned above. These
studies emphasize the importance of integrating various types
of data, including genomic, transcriptomic, epigenomic and
proteomic data, into the prediction model to different extent.
As mentioned above, gene expression was often regarded as
the most informative mark. As a result, it would explain most
of the variation of the drug sensitivity in the final model,
which sometimes makes the model hard to interpret. Aben
et al. [99] developed a two-stage approach, TANDEM, which
first predicts the drug sensitivity using molecular data except
gene expression and then predicts the residuals according to
gene expression data. TANDEM was tested using molecular
and pharmacological data from GDSC, and it was shown that,
when using TANDEM, a larger proportion of variation would
be explained by data except gene expression while retaining
similar predictive power as the conventional approach. Models
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Figure 2. Summary of the workflow of computational studies. Most computational studies would take a subset of pharmacological data, multiomics data and other

data as input, use certain computational methods to model the data and finally get output including biomarker identification, drug response prediction and drug

prioritization. Here, we summarized all pharmacological data, multiomics data and other data as well as computational methods and applications that were related

to the studies reviewed in our article.

produced by TANDEM thus became more interpretable. The
integration of other types of data would provide additional
predictive power. Menden et al. [100] described a machine
learning method to predict drug sensitivity in preclinical cancer
cell line models by using both cell line genomic features and
drug chemical features. Neural network was used to handle the
large amount of input features, and the model could predict drug
sensitivity values with coefficient of determination R2 of 0.72
for cross validation and 0.64 for an independent test data set.
More recently, they reported the integration of germline variants
data in the prediction of cancer drug response. Compared with
using somatic mutation alone or a combination of somatic
mutations and gene expression profiles, the combination of
somatic mutations and germline variants could make better
predictions in some drugs, and the prediction information from
germline variants partially overlapped with that from gene
expression data [101].

Another important question is how the prediction methods
perform on clinical tumor sample data and how to integrate
cancer cell line data with clinical data (Figure 2). Ding et al. [102]
constructed predictive models with molecular data and clinical

drug treatment data from TCGA. The prediction performance
of genomic, epigenomic, transcriptomic and proteomic data on
clinical drug response was compared. The major limitation of
this study is the number of drugs involved and the diversity of
their MOA. Due to the availability of clinical cancer treatment
data, only four drugs were selected in this study, and all of
them are chemotherapeutic drugs. Such a situation indicates
the necessity for more large-scale clinical trials in the area of
precision cancer medicine. Geeleher et al. [103] report a very
interesting method to tackle the lack of clinical drug response
data. Previously, they have developed a method, which con-
structed ridge regression models using gene expression and drug
sensitivity data from cancer cell lines, to predict clinical drug
response [104]. Based on this method, they further developed
an imputed drug-wide association study to first impute drug
response of 138 drugs in over 10 000 TCGA tumor samples
and then associate the imputed drug response with genomic
alterations of tumor samples. Both known and novel biomark-
ers predictive of drug response were identified, and one newly
discovered biomarker was validated by experiments in cancer
cell line. The comprehensive imputation improved the ability
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to identify biomarkers of drug response since the imputation
could increase sample size and many genomic alterations are
inadequately represented in cancer cell line data. However, most
findings still remain unvalidated. The combination of cancer cell
line data and clinical data could also be the other way around.
Webber et al. [105] proposed modular analysis of genomic net-
works in cancer (MAGNETIC), which conduct network analysis
integrating genomic, transcriptomic, epigenomic and proteomic
data to identify gene modules. Their analysis started from iden-
tifying modules in TCGA data and then whether the discov-
ered gene modules were preserved in cancer cell lines were
assessed. The preserved gene modules were shown to be more
robust biomarkers of drug response than genes in preserving
the interrelationship when translating from cancer cell line data
to clinical data. It was also demonstrated that models based
on cell line data and gene modules had better performance
when applied to PDX data compared with that based on genes.
This method showed a way to tackle the transferability problem
between findings based on cell line data and clinical data. It
also highlights the importance of rational summarization of
molecular profiles by network analysis. Gene-based predictive
biomarker was also seen in other studies. Computational anal-
ysis of resistance (CARE) would generate a genome-wide gene
signature for each targeted cancer drug based on cancer cell
line data as a biomarker to predict drug response. It differs from
others in that when inferring the gene signature score for each
gene, CARE would consider the interaction effect between the
objective gene and the target gene of the targeted cancer drug.
The genome-wide gene signature from CARE was also proved to
be superior to that from experimental methods and other com-
putational methods in cell line and clinical data [106]. Finally,
deep learning, as the hottest machine learning method in recent
years, was also applied in the prediction of cancer drug response.
Chiu et al. [107] presented DeepDR, which uses deep neural net-
work to predict cancer drug response according to genomic and
transcriptomic data. More precisely, it consists of three neural
networks, a mutation encoder and a gene expression encoder for
high-dimensional data abstraction and a prediction network for
final prediction. Similar to Geeleher et al.’s work and MAGNETIC,
DeepDR would also combine both cell line and clinical data in
the model training process during which TCGA data were used
to initialize the synaptic parameters of the two encoders. When
compared with linear regression, support vector machines (SVM)
and two variants of DeepDR, DeepDR showed better prediction
performance and stability.

Although the above studies are all about drug sensitivity
prediction and biomarker identification in cancer, they have dif-
ferent objectives and focus on making improvements in different
directions and thus have their own strengths and limitations
(Table 4). Researchers should be clear about the features of these
methods to make the most appropriate choice before application
in their own studies.

In silico drug prioritization

Although cancer treatment has experienced great progress in
recent year, clinicians often have very few options for patients
resistant to current stand of care, and many cancer-specific
mutations have unknown clinical implications [108]. In addition,
in the era of precision medicine, it is desirable to select the
most appropriate therapy for patients by making use of the
rapidly accumulating multiomics patient profiling data. As a
result, in silico drug prioritization, sometimes referred to as in

silico drug prescription, becomes an important topic in cancer
treatment studies. By making use of patient molecular profiles,
gene–drug interactions, functional annotations of cancer genes
and mutations as well as other types of data, in silico drug pre-
scription methods could prioritize drugs for individual patient.
It is notable that, in the process of in silico drug prioritization,
sometimes the original indication of the top prioritized drug
is not the same as the patient cancer type, which means the
original indication could be another type of cancer or noncancer
diseases. In this case, the drug prioritization process is also doing
drug repositioning [109]. In the following section, some exam-
ples of in silico drug prioritization methods based on individual
molecular profiles are introduced (Figure 2 and Table 5).

IMPACT [110] is an analysis pipeline to integrate somatic
mutation calling and drug prioritization together. It served
as a one-stop tool to connect patient molecular profiles with
actionable therapeutics, though the drug recommendation was
made mainly by drug–target interactions and only the FDA-
approved mutation drug sensitivity interactions were used.
Drug prioritization could be evidence based, for example, Li
et al. [111] comprehensively integrated mutation–cancer drug
sensitivity associations from various resources and provided
evidence-based scoring scheme to score actionable mutations
and drugs. Another more complex example is PanDrugs [112],
which prioritizes anticancer therapies based on individual-
level genomic data. PanDrugs mainly relies on genes and drugs
as basic analysis unit and supports a gene list or a patient’s
mutation profile as input. Gscores are first calculated for all
the input genes if the input is a gene list, and Vscores are
calculated and then transformed to Gscores if the input is a
mutation profile. The Gscore is generated by considering the
gene’s frequency in tumorigenesis process, potential to be a
tumor driver gene, essentiality score and oncogenic score from
OncoScape. Then Dscores are calculated for each drug related
to the input genes based on drug indication, drug approval
status, gene–drug relation type, number of genes targeted in
the input list and number of curated sources that support
the gene–drug relationship. The final drug prioritization list
is generated relying on both Gscore and Dscore. Specifically,
PanDrugsdb, the internal database of PanDrugs, contains gene
annotations, drug annotations, comprehensive gene–drug
interactions integrated from multiple databases and mutation
drug response associations. In addition to using genomic data
alone, Kalari et al. [113] described their multiomics-guided drug
prioritization method PANOPLY, which was based on individual
patient’s multiomics data. PANOPLY identifies case-specific
multiomics events by comparing the input patient data and
matched controls. These case-specific multiomics events are
used to generate a drug ranking score by network analysis
and a random forest score by using the importance score from
random forest for each drug. All drugs are then prioritized based
on these two scores. Another study by Rubio-Perez et al. [109]
defines the process of precision drug prescription systematically.
The author presented a very comprehensive work consisting
of cancer driver events identification, associating drugs with
cancer driver events and prescription of drugs to patients based
on their genomic profiles. The first step used three methods
to identify complementary cancer drivers and constructed a
Cancer Drivers Database, while the second step considered
three possible situations to link anticancer therapy with cancer
driver events and constructed a Cancer Drivers Actionability
Database. Taken together, this work provides rich resources and
serves as a classic paradigm for later studies on both mutation
actionability annotation and drug prioritization. Later in 2018,
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Table 5. Summary of in silico drug prioritization methods utilizing mutation information

Name Prioritization method
description

Feature Limitation Related
database

Year of
publishment

Reference

Rubio-Perez
et al. 2015

First define the Cancer Driver
Database and the Cancer Driver
Actionability Database. Then
driver alterations of patients are
selected according to the Cancer
Driver Database and therapies
are assigned to patients on the
basis of the driver alterations
and the rules in the Cancer
Driver Actionability Database

Very comprehensive study
contains the whole
process of in silico cancer
drug prescription
including cancer driver
events identification,
associating drugs with
cancer driver events and
prescription of drugs to
patients based on their
genomic profiles

No drug
prioritization
tools provided

Downloadable
from website

2015 [109]

Cancer Genome
Interpreter (CGI)

First the Cancer Biomarkers
Database and the Cancer
Bioactivities Database are
defined. Then input genomic
alterations are matched with
biomarkers in the databases.

During the process of
biomarker matching,
information like
biomarker co-occurrence,
level of detail of
biomarkers are
considered. In addition,
drug repurposing
including biomarker for a
different tumor type and
different biomarkers with
the same putative effect
are considered.

The drug
prioritization
method is
rather simple

Downloadable
from website

2018 [92]

IMPACT First tier contains drugs found by
linking identified variants with
FDA-approved drug indication
information from NCI-Match and
PCT. Second tier contains drugs
prioritized by enrichment
analysis of drug target genes in
the variants list

IMPACT presents a whole
pipeline from somatic
variants calling to drug
prioritization.

The drug
prioritization
method is
rather simple

Downloadable
from website

2016 [110]

mTCTScan Evidence-based prioritization
score based on variant matching
types and records confidence
levels

Comprehensive
mutation-drug sensitivity
association data
collection and automatic
data retrieval based on
input VCF file

The drug
prioritization
method is
rather simple

Implemented
internally

2017 [111]

PANOPLY Patient-specific multi-omics
events are identified by
comparison with matched
controls. On the basis of
patient-specific multi-omics
events, the drug ranking score is
generated by network analysis
and the random forest score is
generated by importance score
from random forest analysis for
each drug respectively. Drugs are
prioritized by the drug ranking
score and random forest score.

Integration of multi-omics
data and identification of
patient-specific
multi-omics events by
comparison with matched
controls.

Appropriate
matched
control data
are hard to
find

Downloadable
through R
package

2018 [113]

PanDrugs Gscores are calculated for input
genes (or Vscores for input
variants and then transformed
to Gscores) based on gene’s
biological relevance to cancer.
Dscores are calculated for drugs
related to input genes based on
drug properties and gene-drug
relationship. Drugs are finally
prioritized according to both
Gscores and Dscores.

Pathway information is
taken into consideration
when constructing
gene-drug relationship.
Multiple genomic events
are considered
simultaneously when
performing drug
prioritization.
Comprehensive drug-gene
association collection.

NA Implemented
internally

2018 [112]
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the same group developed CGI as a platform for automatic
comprehensive annotation of genomic alterations [92]. Based on
their previous work, CGI similarly defined databases including
the Catalog of Cancer Genes, the Catalog of Validated Oncogenic
Mutations, the Cancer Biomarkers Database and the Cancer
Bioactivities Database and developed an oncogenicity prediction
method, OncodriveMUT. Specifically, CGI provides in silico drug
prescription function by matching input genomic alterations
with biomarkers in the Cancer Biomarkers Database to suggest
potential drugs. The in silico drug prescription process would
take conditions like co-occurrence of multiple biomarkers
and confidence level of the biomarker into consideration and
support some drug repurposing strategies.

Discussions
In the past decades, great development has been seen in pre-
cision cancer medicine. Large-scale clinical trials and preclin-
ical experiments are reported in succession, which provides
extremely rich resources for developing mutation-dependent
cancer treatment. However, to date, only a fraction of genomic
alterations is confirmed clinically actionable, showing a defi-
ciency in translating the abundant resource into more novel
findings. One reason could be attributed to the lack of well-
accepted standard to define and record the clinical relevance of
mutations. Since precision medicine and companion diagnos-
tics remain in preliminary stage, most trials are not originally
designed for identifying the clinical relevance of mutations.
Such a situation leads to inefficiency in extracting information
from literature. Most researchers [84–86, 90] have to curate data
manually from literature, and this often results in redundancy
and inconsistency of the data extracted. Several groups [114]
are cooperating in this direction, and hopefully more standards
could be established soon.

Another major hindrance is the lack of well-characterized
molecular profiles and treatment response information of
patients. As mentioned in many model construction studies,
predictive models based on clinical data were usually deficient
in predictive power because of the limited sample size. There are
multiple ongoing clinical trials specifically designed for testing
molecular biomarkers of drug response, and more insights
shall be revealed upon their completion. In the meantime,
experiments based on PDM models may be a good substitute and
supplement for clinical trials. Conducting drug screening and
pharmacodynamic test prior to clinical trials can substantially
improve the success rate of following studies. However,
researchers should take the advantages and disadvantages
of the three types of PDM models into consideration before
conducting drug screening experiments. PDC models are
easy to construct and culture and require short proliferation
period but are inferior in retaining genomic and biological
characteristics of patient tumors. PDX can well preserve genomic
characteristics, histological features, tumor heterogeneity as
well as microenvironment, although there are cases where the
drug response results from PDX models cannot match that from
clinical patients. The difference may be due to changes in clonal
composition of the tumor model because of tumor evolution.
Further studies are needed to assess the cancer genome
evolution of PDX models and evaluate the differences of tumor
microenvironment between PDX models and patient tumor
samples systematically. The major limitations of PDX models
are the high-cost, the long construction time and the resources
needed for maintenance, which makes it unsuitable for high-
throughput drug screening. For example, a PDX model suitable

for preclinical study usually requires 4–8 months to develop
[67]. PDO models are a recent developed alternative for PDC
and PDX. They are capable of preserving tumor characteristics
while allowing for high-throughput drug screening. However,
as an in vitro model, the tumor blood vessels and immune
component cannot be well reflected by PDOs. There are recent
studies working on the co-culture of PDOs with blood vessels
and immune cells [115], and xenotransplantation of PDOs into
mice [80]. In brief, the PDO model is still in its early stage and
remains to be further developed.

Algorithm development in the prediction of drug sensitivity
has experienced much progress in recent years. In this process,
it was shown that the integration of multiomics data can sig-
nificantly improve model performance. The NCI-DREAM pro-
gram drew the conclusion that the combination of multiple data
types can improve prediction performance through a systematic
comparison of prediction models from 44 teams [14]. Further
studies revealed that the integration of chemical properties of
drugs can be helpful [100] and how to better interpret the model
when multiple types of data are used as predictors [99]. There
are also methods to prioritize cancer drugs based on patients’
multiomics data such as PANOPLY [113]. At current stage, the
results from these computational methods could serve as auxil-
iary information for clinical trial patient selection and therapy
prescription. They also provide crucial insight in mechanism
explanation and experimental biomarker validation of cancer
drug response. Nevertheless, most findings were made based
on in vitro data generated by models such as cancer cell lines.
The translation of in vitro findings to in vivo application is still an
important yet intractable topic. Also, there is no reliable method
to predict the clinical significance of novel mutations, meaning
that clinical oncologists are often provided with no treatment
options for those patients with novel mutations. For in silico drug
prioritization, primary and secondary drug resistance, potential
side effects and intratumor heterogeneity bring difficulties for
effective drug prioritization. Following methods would benefit
from integrating these information as well as multiomics data
in their prioritization tools. As bioinformaticians, we believe
that the integration of well-characterized multiomics data in
prediction models should be the trend, and advanced machine
learning algorithm such as deep learning can help in undis-
covered biomarker identification and clinical relevance predic-
tion by fully exploiting the numerous features provided by this
unprecedented large amount of data.

Mutations in protein coding regions are the major focus of
this review. However, there are other types of molecular biomark-
ers that are predictive of anticancer drug response, such as non-
coding mutations and noncoding RNAs (ncRNA). Mutations in
noncoding regions of CUL3 locus were associated with resistance
to vemurafenib in melanoma through CRISPR-Cas9 screening
[116], and increased level of miR-100 and miR-125b was asso-
ciated with resistance to cetuximab in colorectal cancer [117].
However, compared with protein coding mutations, the clinical
implications of noncoding mutations and ncRNAs in cancer
treatment are yet to be fully described. As important compo-
nents of the landscape of patient molecular profiles that affect
anticancer drug responses, we expect more studies on illumi-
nating the roles of noncoding mutations and ncRNAs in cancer
treatment in the following years.

The study of mutation-dependent cancer treatment is still in
its infancy, but many studies have shown promising results for
its application in clinical cancer treatment. Looking forward, we
expect the accumulation of large-scale patient-level multiomics
data and treatment data by projects like ICGC-ARGO will pro-
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mote our ability to identify promising actionable mutations and
biomarkers of drug response. And the fast-developing PDMs will
be able to provide personalized preclinical models, which better
mimic patient tumor samples. Along with the development
of molecular profiling technologies and computational models,
hopefully we will see more progress in precision cancer medicine
in the near future.

Key Points
• This article reviews studies to analyze associations

between mutations and cancer drug response covering
clinical studies, functional genomics studies and com-
putational studies. It particularly emphasizes related
bioinformatics methods and tools, including resources
for actionable mutations, drug sensitivity prediction as
well as in silico drug prioritization.

• There are a number of databases and knowledge bases
that collect the associations between mutations and
drug response. However, harmonization of different
resources is in need both for the mutation actionability
classification scheme and for the data themselves.

• Drug testing on PDMs are good substitutes of clinical
trials considering the time and cost. A number of drug
testing have been conducted on PDCs and PDXs, but
they both have problems of retaining tumor hetero-
geneity of the original samples. The newly developed
PDO model shows great potential but need to be further
studied.

• In addition to somatic mutations, most computational
methods would integrate various types of data, such as
transcriptomic data and epigenomic data, to improve
the accuracy of drug response prediction and drug pri-
oritization.

• There are rich resources of preclinical drug screening
data but limited clinical trial data. To connect pre-
clinical data with clinical data, many studies have
shown the consistency and transferability between
them. However, we still need more systematic studies to
comprehensively reveal the consistency and inconsis-
tency between them and to establish a general pipeline
consisting of preclinical testing (PDM-based), compu-
tational analysis and clinical validation for precision
cancer treatment.

Acknowledgments

We appreciate all method and resource developers.

Funding

This work was supported by grants from the National Nat-
ural Science Foundation of China (31701143 and 31871327
to M.J.L.) and Natural Science Foundation of Tianjin
(18JCZDJC34700 to M.J.L.).

References
1. Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal

resistance mutations on targeted cancer therapy. Nat Rev
Clin Oncol 2016;13:335–47.

2. Carr TH, McEwen R, Dougherty B, et al. Defining actionable
mutations for oncology therapeutic development. Nat Rev
Cancer 2016;16:319–29.

3. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or
carboplatin-paclitaxel in pulmonary adenocarcinoma. N
Engl J Med 2009;361:947–57.

4. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus
cisplatin plus docetaxel in patients with non-small-cell
lung cancer harbouring mutations of the epidermal growth
factor receptor (WJTOG 3405): an open label, randomised
phase 3 trial. Lancet Oncol 2010;11:121–8.

5. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib
or chemotherapy for non-small-cell lung cancer with
mutated EGFR. N Engl J Med 2010;362:2380–8.

6. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation
and resistance of non-small-cell lung cancer to gefitinib. N
Engl J Med 2005;352:786–92.

7. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung
adenocarcinomas to gefitinib or erlotinib is associated with
a second mutation in the EGFR kinase domain. PLoS Med
2005;2:e73.

8. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al.
Trastuzumab after adjuvant chemotherapy in HER2-
positive breast cancer. N Engl J Med 2005;353:1659–72.

9. Gagan J, Van Allen EM. Next-generation sequencing to
guide cancer therapy. Genome Med 2015;7:80.

10. Tomczak K, Czerwinska P, Wiznerowicz M. The cancer
genome atlas (TCGA): an immeasurable source of knowl-
edge. Contemp Oncol (Pozn) 2015;19:A68–77.

11. International Cancer Genome Consortium, Hudson TJ,
Anderson W, et al. International network of cancer genome
projects. Nature 2010;464:993–8.

12. Meric-Bernstam F, Johnson A, Holla V, et al. A decision sup-
port framework for genomically informed investigational
cancer therapy. J Natl Cancer Inst 2015;107.

13. Jiang P, Sellers WR, Liu XSJARBDS. Big data approaches for
modeling response and resistance to cancer drugs, Vol. 1, 2018,
1–27.

14. Costello JC, Heiser LM, Georgii E, et al. A community effort to
assess and improve drug sensitivity prediction algorithms.
Nat Biotechnol 2014;32:1202–12.

15. Hollingsworth SJ. Precision medicine in oncology drug
development: a pharma perspective. Drug Discov Today
2015;20:1455–63.

16. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras muta-
tions and benefit from cetuximab in advanced colorectal
cancer. N Engl J Med 2008;359:1757–65.

17. Herbst RS, Gandara DR, Hirsch FR, et al. Lung Mas-
ter Protocol (lung-MAP)—a biomarker-driven protocol for
accelerating development of therapies for squamous cell
lung cancer: SWOG S 1400. Clin Cancer Res 2015;21:
1514–24.

18. McNeil C. NCI-MATCH launch highlights new trial design in
precision-medicine era. J Natl Cancer Inst 2015;107.

19. Shitara K, Miki I, Sudo T, et al. The nationwide cancer genome
screening projects for gastrointestinal cancer in Japan (SCRUM-
Japan GI-SCREEN): efficient identification of actionable cancer
genome alterations in advanced colorectal and non-colorectal
gastrointestinal cancer (GI Screen 2013-01-CRC and 2015-01-
Non CRC) 2015. American Society of Clinical Oncology.

20. Middleton G, Crack LR, Popat S, et al. The National
Lung Matrix Trial: translating the biology of stratifica-
tion in advanced non-small-cell lung cancer. Ann Oncol
2015;26:2464–9.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1886/5626330 by Tianjin M

edical U
niversity user on 02 Septem

ber 2021



Mutation-dependent effects on cancer drug treatment 1901

21. Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric
trials for therapeutic development in precision oncology.
Nature 2015;526:361–70.

22. Andre F, Mardis E, Salm M, et al. Prioritizing targets for
precision cancer medicine. Ann Oncol 2014;25:2295–303.

23. Hovelson DH, McDaniel AS, Cani AK, et al. Development and
validation of a scalable next-generation sequencing system
for assessing relevant somatic variants in solid tumors.
Neoplasia 2015;17:385–99.

24. Sicklick JK, Kato S, Okamura R, et al. Molecular profiling of
cancer patients enables personalized combination therapy:
the I-PREDICT study. Nat Med 2019;1.

25. Rodon J, Soria J-C, Berger R, et al. Genomic and transcrip-
tomic profiling expands precision cancer medicine: the
WINTHER trial. Nat Med 2019;1.

26. Rothwell DG, Ayub M, Cook N, et al. Utility of ct DNA to
support patient selection for early phase clinical trials: the
TARGET study. Nat Med 2019;1.

27. Johns A. Consortium ICG. AACR: A million years of precision
oncology knowledge for the world, 2019.

28. Zehir A, Benayed R, Shah RH, et al. Mutational landscape
of metastatic cancer revealed from prospective clinical
sequencing of 10, 000 patients. Nat Med 2017;23:703–13.

29. Vanneman M, Dranoff G. Combining immunotherapy and
targeted therapies in cancer treatment. Nat Rev Cancer
2012;12:237–51.

30. Hughes PE, Caenepeel S, Wu LC. Targeted therapy and
checkpoint immunotherapy combinations for the treat-
ment of cancer. Trends Immunol 2016;37:462–76.

31. Hu-Lieskovan S, Robert L, Homet Moreno B, et al. Com-
bining targeted therapy with immunotherapy in BRAF-
mutant melanoma: promise and challenges. J Clin Oncol
2014;32:2248–54.

32. Moya-Horno I, Viteri S, Karachaliou N et al. Combination of
immunotherapy with targeted therapies in advanced non-
small cell lung cancer (NSCLC), Ther Adv Med Oncol 2018; 10:
1758834017745012.

33. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-
1 pathway contributes to immune escape in EGFR-driven
lung tumors. Cancer Discov 2013;3:1355–63.

34. Shoemaker RH. The NCI60 human tumour cell line anti-
cancer drug screen. Nat Rev Cancer 2006;6:813–23.

35. Paull KD, Shoemaker RH, Hodes L, et al. Display and analysis
of patterns of differential activity of drugs against human
tumor cell lines: development of mean graph and COM-
PARE algorithm. J Natl Cancer Inst 1989;81:1088–92.

36. Weinstein JN, Myers TG, O’Connor PM, et al. An
information-intensive approach to the molecular
pharmacology of cancer. Science 1997;275:343–9.

37. Shankavaram UT, Varma S, Kane D, et al. Cell miner: a
relational database and query tool for the NCI-60 cancer
cell lines. BMC Genom 2009;10:277.

38. Barretina J, Caponigro G, Stransky N, et al. The cancer
cell line encyclopedia enables predictive modelling of anti-
cancer drug sensitivity. Nature 2012;483:603–7.

39. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic iden-
tification of genomic markers of drug sensitivity in cancer
cells. Nature 2012;483:570–5.

40. Yang W, Soares J, Greninger P, et al. Genomics of drug
sensitivity in cancer (GDSC): a resource for therapeu-
tic biomarker discovery in cancer cells. Nucleic Acids Res
2013;41:D955–61.

41. Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of Phar-
macogenomic interactions in cancer. Cell 2016;166:740–54.

42. Basu A, Bodycombe NE, Cheah JH, et al. An interactive
resource to identify cancer genetic and lineage dependen-
cies targeted by small molecules. Cell 2013;154:1151–61.

43. Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing
connectivity in a large-scale small-molecule sensitivity
dataset. Cancer Discov 2015;5:1210–23.

44. Haibe-Kains B, El-Hachem N, Birkbak NJ, et al. Inconsistency
in large pharmacogenomic studies. Nature 2013;504:389–93.

45. Cancer Cell Line Encyclopedia Consortium, Genomics of
Drug Sensitivity in Cancer Consortium. Pharmacogenomic
agreement between two cancer cell line data sets. Nature
2015;528:84–7.

46. Bouhaddou M, DiStefano MS, Riesel EA, et al. Drug response
consistency in CCLE and CGP. Nature 2016;540:E9–10.

47. Geeleher P, Gamazon ER, Seoighe C, et al. Consistency in
large pharmacogenomic studies. Nature 2016;540:E1–2.

48. Mpindi JP, Yadav B, Ostling P, et al. Consistency in drug
response profiling. Nature 2016;540:E5–6.

49. Haverty PM, Lin E, Tan J, et al. Reproducible pharma-
cogenomic profiling of cancer cell line panels. Nature
2016;533:333–7.

50. Zhu YX, Tiedemann R, Shi CX, et al. RNAi screen of the
druggable genome identifies modulators of proteasome
inhibitor sensitivity in myeloma including CDK5. Blood
2011;117:3847–57.

51. Bernards R, Brummelkamp TR, Beijersbergen RL. Sh RNA
libraries and their use in cancer genetics. Nat Methods
2006;3:701–6.

52. Martinez-Lage M, Puig-Serra P, Menendez P, et al. CRISPR/-
Cas 9 for cancer therapy: hopes and challenges. Biomedicine
2018;6.

53. Shi J, Wang E, Milazzo JP, et al. Discovery of cancer drug
targets by CRISPR-Cas 9 screening of protein domains. Nat
Biotechnol 2015;33:661–7.

54. Behan FM, Iorio F, Picco G, et al. Prioritization of cancer
therapeutic targets using CRISPR-Cas 9 screens. Nature
2019.

55. Pan D, Kobayashi A, Jiang P, et al. A major chromatin regula-
tor determines resistance of tumor cells to T cell-mediated
killing. Science 2018;359:770–5.

56. Jun S, Lim H, Lee JH, et al. Single-cell analysis of a mutant
library generated using CRISPR-guided deaminase. bio Rxiv,
2019, 610725.

57. Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas 9-
mediated genome editing. FEBS J 2016;283:1218–31.

58. Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for
cancer research and therapeutics. Nat Rev Clin Oncol
2019;16:281–95.

59. Byrne AT, Alferez DG, Amant F, et al. Interrogating open
issues in cancer precision medicine with patient-derived
xenografts. Nat Rev Cancer 2017;17:254–68.

60. Kato S, Kurzrock R. An avatar for precision cancer therapy.
Nat Biotechnol 2018;36:1053–5.

61. Lee JY, Kim SY, Park C, et al. Patient-derived cell models
as preclinical tools for genome-directed targeted therapy.
Oncotarget 2015;6:25619–30.

62. Lee JK, Liu Z, Sa JK, et al. Pharmacogenomic landscape
of patient-derived tumor cells informs precision oncology
therapy. Nat Genet 2018;50:1399–411.

63. Bertotti A, Migliardi G, Galimi F, et al. A molecularly anno-
tated platform of patient-derived xenografts ("xenopa-
tients") identifies HER2 as an effective therapeutic tar-
get in cetuximab-resistant colorectal cancer. Cancer Discov
2011;1:508–23.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1886/5626330 by Tianjin M

edical U
niversity user on 02 Septem

ber 2021



1902 Yao et al.

64. Chen W, Hill H, Christie A, et al. Targeting renal cell carci-
noma with a HIF-2 antagonist. Nature 2016;539:112–7.

65. Stewart E, Federico SM, Chen X, et al. Orthotopic patient-
derived xenografts of paediatric solid tumours. Nature
2017;549:96–100.

66. Gao H, Korn JM, Ferretti S, et al. High-throughput screening
using patient-derived tumor xenografts to predict clinical
trial drug response. Nat Med 2015;21:1318–25.

67. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived
xenograft models: an emerging platform for translational
cancer research. Cancer Discov 2014;4:998–1013.

68. Knoblaugh SE, Himmel LE. Keeping score: Semiquantitative
and quantitative scoring approaches to genetically engi-
neered and xenograft mouse models of cancer. Vet Pathol
2018;300985818808526.

69. Houghton PJ, Morton CL, Tucker C, et al. The pediatric pre-
clinical testing program: description of models and early
testing results. Pediatr Blood Cancer 2007;49:928–40.

70. Townsend EC, Murakami MA, Christodoulou A, et al.
The public repository of Xenografts enables discovery
and randomized phase II-like trials in mice. Cancer Cell
2016;29:574–86.

71. Schultz KR, Bowman WP, Aledo A, et al. Improved
early event-free survival with imatinib in Philadelphia
chromosome-positive acute lymphoblastic leukemia:
a children’s oncology group study. J Clin Oncol
2009;27:5175–81.

72. Bruna A, Rueda OM, Greenwood W, et al. A biobank of breast
cancer explants with preserved intra-tumor heterogene-
ity to screen anticancer compounds. Cell 2016;167:260–274
e222.

73. Brabetz S, Leary SES, Grobner SN, et al. A biobank of
patient-derived pediatric brain tumor models. Nat Med
2018;24:1752–61.

74. Burrell RA, McGranahan N, Bartek J, et al. The causes and
consequences of genetic heterogeneity in cancer evolution.
Nature 2013;501:338–45.

75. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resis-
tance to cancer therapies. Nat Rev Clin Oncol 2018;15:
81–94.

76. Yang H, Sun L, Liu M, et al. Patient-derived organoids: a
promising model for personalized cancer treatment. Gas-
troenterol Rep (Oxf) 2018;6:243–5.

77. Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug
response in patient-derived organoid models of bladder
cancer. Cell 2018;173:515–528 e517.

78. van de Wetering M, Francies HE, Francis JM, et al. Prospec-
tive derivation of a living organoid biobank of colorectal
cancer patients. Cell 2015;161:933–45.

79. Yan HHN, Siu HC, Law S, et al. A comprehensive human
gastric cancer organoid biobank captures tumor subtype
heterogeneity and enables therapeutic screening. Cell Stem
Cell 2018;23:882–897 e811.

80. Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid
platform for ovarian cancer captures intra-and interpatient
heterogeneity. Nat Med 2019;1.

81. Van Allen EM, Wagle N, Stojanov P, et al. Whole-exome
sequencing and clinical interpretation of formalin-fixed,
paraffin-embedded tumor samples to guide precision can-
cer medicine. Nat Med 2014;20:682–8.

82. Sukhai MA, Craddock KJ, Thomas M, et al. A classification
system for clinical relevance of somatic variants identi-
fied in molecular profiling of cancer. Genet Med 2016;18:
128–36.

83. Dienstmann R, Dong F, Borger D, et al. Standardized deci-
sion support in next generation sequencing reports of
somatic cancer variants. Mol Oncol 2014;8:859–73.

84. Yeh P, Chen H, Andrews J, et al. DNA-Mutation Inven-
tory to Refine and Enhance Cancer Treatment (DIRECT):
a catalog of clinically relevant cancer mutations to
enable genome-directed anticancer therapy. Clin Cancer Res
2013;19:1894–901.

85. Johnson A, Zeng J, Bailey AM, et al. The right drugs at the
right time for the right patient: the MD Anderson preci-
sion oncology decision support platform. Drug Discov Today
2015;20:1433–8.

86. Dienstmann R, Jang IS, Bot B, et al. Database of genomic
biomarkers for cancer drugs and clinical targetability in
solid tumors. Cancer Discov 2015;5:118–23.

87. Damodaran S, Miya J, Kautto E, et al. Cancer Driver Log
(CanDL): catalog of potentially actionable cancer muta-
tions. J Mol Diagn 2015;17:554–9.

88. Patterson SE, Liu R, Statz CM, et al. The clinical trial land-
scape in oncology and connectivity of somatic mutational
profiles to targeted therapies. Hum Genomics 2016;10:4.

89. Huang L, Fernandes H, Zia H, et al. The cancer preci-
sion medicine knowledge base for structured clinical-grade
mutations and interpretations. J Am Med Inform Assoc
2017;24:513–9.

90. Griffith M, Spies NC, Krysiak K, et al. CIViC is a community
knowledgebase for expert crowdsourcing the clinical inter-
pretation of variants in cancer. Nat Genet 2017;49:170–4.

91. Chakravarty D, Gao J, Phillips SM, et al. Onco KB: a precision
oncology knowledge base. JCO Precis Oncol 2017;2017.

92. Tamborero D, Rubio-Perez C, Deu-Pons J, et al. Cancer
genome interpreter annotates the biological and clinical
relevance of tumor alterations. Genome Med 2018;10:25.

93. Sun SQ, Mashl RJ, Sengupta S, et al. Database of evidence
for precision oncology portal. Bioinformatics 2018;34:4315–7.

94. Forbes SA, Beare D, Bindal N, et al. COSMIC: high-resolution
cancer genetics using the catalogue of somatic mutations
in cancer. Curr Protoc Hum Genet 2016;91:10.11.1–10.11.37.

95. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic
cancer genetics at high-resolution. Nucleic Acids Res
2017;45:D777–83.

96. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the cata-
logue of somatic mutations in cancer. Nucleic Acids Res
2019;47:D941–7.

97. Kumar R, Chaudhary K, Gupta S, et al. Cancer DR: cancer
drug resistance database. Sci Rep 2013;3:1445.

98. Gohlke BO, Nickel J, Otto R, et al. Cancer resource—updated
database of cancer-relevant proteins, mutations and inter-
acting drugs. Nucleic Acids Res 2016;44:D932–7.

99. Aben N, Vis DJ, Michaut M, et al. TANDEM: a two-stage
approach to maximize interpretability of drug response
models based on multiple molecular data types. Bioinfor-
matics 2016;32:i413–20.

100. Menden MP, Iorio F, Garnett M, et al. Machine learning pre-
diction of cancer cell sensitivity to drugs based on genomic
and chemical properties. PLoS One 2013;8:e61318.

101. Menden MP, Casale FP, Stephan J, et al. The germline genetic
component of drug sensitivity in cancer cell lines. Nat
Commun 2018;9:3385.

102. Ding Z, Zu S, Gu J. Evaluating the molecule-based pre-
diction of clinical drug responses in cancer. Bioinformatics
2016;32:2891–5.

103. Geeleher P, Zhang Z, Wang F, et al. Discovering novel phar-
macogenomic biomarkers by imputing drug response in

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1886/5626330 by Tianjin M

edical U
niversity user on 02 Septem

ber 2021



Mutation-dependent effects on cancer drug treatment 1903

cancer patients from large genomics studies. Genome Res
2017;27:1743–51.

104. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be
predicted using baseline gene expression levels and in vitro
drug sensitivity in cell lines. Genome Biol 2014;15:R47.

105. Webber JT, Kaushik S, Bandyopadhyay S. Integration
of tumor genomic data with cell lines using multi-
dimensional network modules improves cancer pharma-
cogenomics. Cell Syst 2018;7:526–536 e526.

106. Jiang P, Lee W, Li X, et al. Genome-scale signatures of
gene interaction from compound screens predict clinical
efficacy of targeted cancer therapies. Cell Syst 2018;6:343–
354 e345.

107. Chiu YC, Chen HH, Zhang T, et al. Predicting drug response
of tumors from integrated genomic profiles by deep neural
networks. BMC Med Genomics 2019;12:18.

108. Hyman DM, Taylor BS, Baselga J. Implementing genome-
driven oncology. Cell 2017;168:584–99.

109. Rubio-Perez C, Tamborero D, Schroeder MP, et al. In sil-
ico prescription of anticancer drugs to cohorts of 28
tumor types reveals targeting opportunities. Cancer Cell
2015;27:382–96.

110. Hintzsche J, Kim J, Yadav V, et al. IMPACT: a whole-exome
sequencing analysis pipeline for integrating molecular pro-
files with actionable therapeutics in clinical samples. J Am
Med Inform Assoc 2016.

111. Li MJ, Yao H, Huang D, et al. mTCTScan: a comprehen-
sive platform for annotation and prioritization of muta-
tions affecting drug sensitivity in cancers. Nucleic Acids Res
2017;45:W215–21.

112. Pineiro-Yanez E, Reboiro-Jato M, Gomez-Lopez G, et al. Pan
drugs: a novel method to prioritize anticancer drug treat-
ments according to individual genomic data. Genome Med
2018;10:41.

113. Kalari KR, Sinnwell JP, Thompson KJ, et al. PANOPLY: Omics-
guided drug prioritization method tailored to an individual
patient. JCO Clin Cancer Inform 2018;(2):1–11.

114. Ritter DI, Roychowdhury S, Roy A, et al. Somatic can-
cer variant curation and harmonization through con-
sensus minimum variant level data. Genome Med 2016;8:
117.

115. Nozaki K, Mochizuki W, Matsumoto Y, et al. Co-culture with
intestinal epithelial organoids allows efficient expansion
and motility analysis of intraepithelial lymphocytes. J Gas-
troenterol 2016;51:206–13.

116. Sanjana NE, Wright J, Zheng K, et al. High-resolution inter-
rogation of functional elements in the noncoding genome.
Science 2016;353:1545–9.

117. Lu Y, Zhao X, Liu Q, et al. Lnc RNA MIR100HG-derived
mi R-100 and mi R-125b mediate cetuximab resis-
tance via Wnt/beta-catenin signaling. Nat Med 2017;23:
1331–41.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/6/1886/5626330 by Tianjin M

edical U
niversity user on 02 Septem

ber 2021


	Methods and resources to access mutation-dependent effects on cancer drug treatment
	Introduction
	Clinical studies
	Clinical studies

	Functional genomics studies
	Cell line-based drug screening studies
	CRISPR screening studies
	PDM studies

	Computational studies
	Classification and resources for actionable mutations
	Drug sensitivity prediction and biomarker identification
	In silico drug prioritization

	Discussions
	Key Points

	Funding


